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Who Am I? 

• Current research focus 
– High-order methods for coupled THMC processes in geosystems 

• PhD in Aerospace Engineering with Minor in General Mathematics 

• Research interest 
– Computational fluid dynamics and heat transfer 

– High performance computing with GPU 

--- Past --- --- Now --- 
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Code Description 

• FALCON code 
– Stands for Fracturing And Liquid CONvection 

 

– Built based on INL’s MOOSE framework http://www.mooseframework.com/ 

 

– Physics-based, massively parallel, fully-coupled, finite element model for 
simultaneously solving multiphase fluid Flow, heat transport, and rock 
deformation for geothermal reservoir simulation   

 

• Collaborative efforts 
– INL: Derek Gaston, Cody Permann, Mitch Plummer 

– U. of Utah: Luanjing Guo, Jacob Bradford, Raili Taylor, Surya Sunkavalli 

– Others: CSIRO, U. of Western Au., U. of NSW, U. of Auckland 
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• MOOSE is an object-oriented FEM 
framework allowing rapid development 
of new simulation tools. Meets NQA-1 
requirements. 

• Application development focuses on 
implementing physics rather than 
numerical issues. 

• Leverages multiple DOE and university 
developed scientific computational tools 

• Used by multiple national labs, 
universities and industry partners 

– ~25 applications build on the 
framework 

 

MOOSE Project 
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Thermal Solid Contact 
Reaction  
Diffusion 

Framework 
• Mesh 
• I/O 
• Element Library 

libmesh 



General Capabilities of MOOSE 

• 1D, 2D, and 3D 

– User code agnostic of dimension 

• Finite Element Based, C++ 

– Continuous Galerkin 

– Discontinuous Galerkin 

• Fully Coupled/Fully Implicit, “Tight” and “Loose” Coupling Capabilities 

• Unstructured Mesh 

– All shapes (Quads, Tris, Hexes, Tets, Pyramids, Wedges…) 

– Higher order geometry (curvilinear, etc.) 

– Reads and writes multiple formats 

• Mesh and Timestep Adaptivity 

• Parallel 

– User code agnostic of parallelism 

• High Order 

– User code agnostic of shape functions 
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Solution Framework 

• MOOSE is based on a Jacobian-Free Newton-Krylov (JFNK) nonlinear solution scheme 

• JFNK is ideally suited to solution of large multiphysics systems: 
– Lack of need for Jacobian saves space and time 

– No need to find perfect analytic derivatives (which can be difficult or impossible) 

• All physics are solved simultaneously in a fully implicit, fully coupled manner 
– Allows for large time steps 

• MOOSE handles all coupling, simultaneously converging all equations 

• JFNK uses a Krylov solver and still needs preconditioning 
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Physics Based Preconditioning in RAT 



Background 

• Main numerical methods for THMC processes in geosystems 

 

– Finite Difference (FD) 
   Simple to implement, fast, high-order is feasible 

    Rigorous requirement in mesh quality; not robust for complex geometries 

 

– Finite Volume (FV) 
   Locally conservative; robust and fast; complex geometries  

    Loss of accuracy in non-conforming mesh and adaptive mesh refinement 

 

– Finite Element (FE) 
   High-order accuracy and complex geometries 

   Suited for multi-physics coupling e.g., fluid-solid 

    Not well suited for problems with direction, e.g., hyperbolic-type PDEs 

 
No single numerical method can perfectly handle all aspects of THMC! 
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Background (cont.) 

• Example: 1D transport of a steep thermal front with FE 

–  A minimal representation of cold fluid injection into a hot fractured zone 

 FE (P1) 

o 2nd-order linear polynomial 

 BDF1 – Backward Difference 

o 1st-order time integration 

 CN2 – Crank-Nicolson 

o 2nd-order time integration 
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 Strong non-physical oscillations near thermal front 
• High-order temporal scheme retains oscillations in a wider region 

• Lower-order temporal scheme dissipates the errors, but also decrease accuracy 



Background (cont.) 

• Exemplary stabilization approaches in the context of FE 
– Streamline Upwind Petrov Galerkin (SUPG), with discontinuity capturing 
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 Can significantly stabilize transport, but still 

with over- and under-shoots near the front 

 
 Formulation strongly depends on the original 

PDEs, not easy to be modulated  

 

 Parameters for tuning 

 

 Alternative FEMs? 
o Flux-Corrected Transport (FCT)-FEM 

o Edge-based FEM 

o Entropy Viscosity Method (EVM)  

 



Motivation 

• A non-oscillatory and accurate thermal front tracking technique based 
on an accurate, robust and flexible numerical method 
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We propose a class of “reconstructed discontinuous Galerkin” methods – rDG,  

that combine the advantages of both Finite Element and Finite Volume methods 

for thermal and hydraulic modeling and simulations in geothermal reservoir 



What is Discontinuous Galerkin (DG) Method? 

• DG is a variant of the standard (continuous) Galerkin FE method 

– Continuous FE requires continuity of the solution along the 
element interfaces (edges). 

– DG does NOT require continuity of the solution along edges 

 

 

 

 

 

 

 

 

 

• DG has more degrees of freedom (unknowns) to solve than FE 
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Finite Element Finite Volume 

Discontinuous Galerkin 



Features of Discontinuous Galerkin Method 

• Why DG? 
– Well suited for complex geometries and non-conforming meshes. 

– Adaptive mesh refinement is easier to implement. 

– Compact and highly parallelizable 

 

• Why not DG? 
– High computational costs (more DOFs for each element) 

• More computing time 

• More storage requirement 
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Later on I will prove that this is not 

true! 



Choices of Basis Functions: nodal DG  

• The DG solution is often represented by the Lagrange basis functions 

 

 

 

 

 

 

 
 

– In the case of linear basis, unknowns Uj happen to be on the vertices. 

– Polynomial solutions depend on the shape of elements. 
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U »Uh = U jBj
j=1

N

å

Q1/P1 Q2/P2 



Choices of Basis Functions: modal DG  

• Taylor series expansion at the cell centroid, e.g., a P2 polynomial 

 
 

 

– The unknowns are cell-averaged variables and their 1st and 2nd derivatives 
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Features of the Taylor-basis DG 

• Same approximate polynomial solution for any shape of elements: 
– Easy to implement on arbitrary shapes of grids 

 

• Handily available cell-averaged variables and their derivatives 
– Easy to implement limiting / discontinuity capturing techniques 

 

• A type of hierarchical basis 
– Easy to implement p-multigrid and p-adaptivity 
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A Generic Convection-Diffusion Equation 

• Strong form 

 

 

 

– U – the variable of interest, e.g., species concentration for mass 
transfer, temperature for heat transfer 

– V – the average velocity that the quantity is moving 

– D – the diffusivity 

– F – the “source/sink” term 

 

• A linear case 
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¶U(x, t)

¶t
+Ñ× VU(x, t)( ) -Ñ×Ñ DU(x, t)( ) -F = 0

withU0 =U(x, 0) at t = 0

¶U(x, t)

¶t
+V ×ÑU(x, t)-DÑ×ÑU(x, t) = 0



Discontinuous Galerkin Discretization 

• Weak form 

 

 

 

– N – the dimension of the polynomial space 

– Bi – the basis of polynomial function of degree p 

 

• Treatment of non-unique interface fluxes 
– Upwind or solve a Riemann problem like in the case of Finite Volume 
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Taylor-Basis DG Formulation 

• Take another look at the weak form, e.g., DG (P2) 

 

 

 

 

 

 
– The cell-averaged variable is decoupled from the derivatives 

 

 
– Finite Volume becomes a subset in Taylor-basis DG formulation! 
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Hierarchically Reconstructed DG – rDG methods 

• A few of the rDG methods in the present study: 

 
– rDG (P0P1): 2nd-order in space 

• Step 1. Reconstruct the 1st derivatives based on P0 solution 

• Step 2. Limit the 1st derivatives using compact WENO reconstruction at P1 

 

– rDG (P1P1): 2nd-order in space 
• Step 1. Limit the 1st derivatives using compact WENO reconstruction at P1 

 
– rDG (P1P2): 3rd-order in space 

• Step 1. Reconstruct the 2nd derivatives based on P1 solution 

• Step 2. Limit the 2nd derivatives using compact WENO reconstruction at P2 

• Step 3. Limit the 1st derivatives using compact WENO reconstruction at P1 
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------ WENO: Weighted Essentially Non-Oscillatory schemes ------ 

Refer to the paper for the mathematical description in detail 



Numerical Experiments 

• Meshes for the first two examples 
– 3D simulation of 1D problems on hexahedral grids 

– Domain bounded by (x, y, z) = ([0, 1], [0, 0.01], [0, 0.01]) 

 

 

 

 

 

 

 

 

 

• High-order time integration schemes are applied 

• All the examples are conducted in the 3D coordinate system 
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Example 1. Gaussian Hump in 1D 

• A nonlinear wave profile advected by the transport equation: 

 

 
– The damping coefficient β = 200, and the initial location x0 = 0.2. All the 

computations were started at t0 = 0 and terminated at t = 0.6.  

 

 

 

 

 

 

• Objective: error analysis on a smooth convective problem 
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U(x, 0) = exp -b(x- x0 )2( ) for x Î [0, 1]
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Initial conditions represented by exact linear DG solution for h = 1/25, 1/50 and 1/100.  



Example 1. Gaussian Hump in 1D (cont.) 

•   
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Solution profiles for h = 1/25   

Solution profiles for h = 1/50   

Solution profiles for h = 

1/100   



Example 1. Gaussian Hump in 1D (cont.) 

• Spatial error analysis 
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Example 2. Step Function in 1D 

• Initial conditions 

 

 

• Analytical solution to this initial-value-problem 

 

 

 

 

 

 

 

• Useful notations: DG(P0) | rDG(P0P1) | DG(P1) | rDG(P1P1) | rDG(P1P2) 
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Left state: U =1.0, V = (1, 0, 0) for x £ 0

Right state: U = 0, V = (1, 0, 0) for 0 £ x £1
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for Peclet number = 10   
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Example 3. Transport of Square Wave in 2D 

• Quadrilateral meshes 
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Example 3. Transport of Square Wave in 2D 
(cont.) 
• Triangular meshes 
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Example 4. Cold Water Injection in 3D  

• Injection of cold water through a fractured rock zone 
– Designed Peclet number = 1000 (strongly convective) 

– Domain bounded by (x, y, z) = ([-0.5, 0.5], [-0.5, 0.5], [-0.5, 0.5]) 

– Pressure-temperature based thermo-hydro formulation in porous media 

Xia et al., Non-Oscillatory Thermal Front Tracking Based on a Reconstructed Discontinuous Galerkin Method in Geothermal Reservoir Simulation 29 

¶r

¶t
+Ñ× -r

k

m
Ñp

æ

è
ç

ö

ø
÷= 0

frcw + (1-f)rrcr[ ]
¶T

¶t
-Ñ× KmÑp( ) + cwq ×ÑT = 0

ì

í

ï
ï

î

ï
ï



Example 4. Cold Water Injection in 3D (cont.) 

• Pressure gradient-induced thermal transport of cold water in a hot 
fractured rock zone 
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Conclusion 

• A class of reconstructed discontinuous Galerkin methods for thermal 
and hydraulic (TH) modeling and simulation in porous media 

 

– Effective thermal front tracking without non-physical oscillations 

– Sufficient accuracy 

 

• Limitations 

– Solid mechanics (Finite Element is still the choice here) 

 

• Future work 

– two-phase flow (water and steam) 

 

– Chemically reactive transport (hyperbolic-type equations) 
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